3.7.30 \(\int \frac {a+b \text {ArcSin}(c x)}{x^2 (d+e x^2)} \, dx\) [630]

Optimal. Leaf size=579 \[ -\frac {a+b \text {ArcSin}(c x)}{d x}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d}+\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \text {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {PolyLog}\left (2,\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \text {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {PolyLog}\left (2,\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}} \]

[Out]

(-a-b*arcsin(c*x))/d/x-b*c*arctanh((-c^2*x^2+1)^(1/2))/d+1/2*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))
*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(
1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2
+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^
2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*I*b*polylog(2,-(I*c*x+(-c^2*x
^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*I*b*polylog(2,(I*c*x+(-c^2*x^2+1
)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(
1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*I*b*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2)
)*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.65, antiderivative size = 579, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 11, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {4817, 4723, 272, 65, 214, 4757, 4825, 4617, 2221, 2317, 2438} \begin {gather*} \frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \text {ArcSin}(c x)) \log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {a+b \text {ArcSin}(c x)}{d x}+\frac {i b \sqrt {e} \text {Li}_2\left (-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {Li}_2\left (\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \text {Li}_2\left (-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {Li}_2\left (\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/(x^2*(d + e*x^2)),x]

[Out]

-((a + b*ArcSin[c*x])/(d*x)) - (b*c*ArcTanh[Sqrt[1 - c^2*x^2]])/d + (Sqrt[e]*(a + b*ArcSin[c*x])*Log[1 - (Sqrt
[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcSin[c*x])*Log[1
+ (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) + (Sqrt[e]*(a + b*ArcSin[c*x])
*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcSi
n[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) + ((I/2)*b*Sqrt[
e]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e]))])/(-d)^(3/2) - ((I/2)*b*Sqrt[e]*
PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(-d)^(3/2) + ((I/2)*b*Sqrt[e]*PolyLo
g[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e]))])/(-d)^(3/2) - ((I/2)*b*Sqrt[e]*PolyLog[2
, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(-d)^(3/2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4617

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Dist[I, Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a - Rt[-a^2 + b
^2, 2] + b*E^(I*(c + d*x)))), x], x] + Dist[I, Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a + Rt[-a^2 + b^2, 2] + b*E
^(I*(c + d*x)))), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NegQ[a^2 - b^2]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4757

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])

Rule 4817

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcSin[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 4825

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cos[x]/(
c*d + e*Sin[x])), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{x^2 \left (d+e x^2\right )} \, dx &=\int \left (\frac {a+b \sin ^{-1}(c x)}{d x^2}-\frac {e \left (a+b \sin ^{-1}(c x)\right )}{d \left (d+e x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {a+b \sin ^{-1}(c x)}{x^2} \, dx}{d}-\frac {e \int \frac {a+b \sin ^{-1}(c x)}{d+e x^2} \, dx}{d}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}+\frac {(b c) \int \frac {1}{x \sqrt {1-c^2 x^2}} \, dx}{d}-\frac {e \int \left (\frac {\sqrt {-d} \left (a+b \sin ^{-1}(c x)\right )}{2 d \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {\sqrt {-d} \left (a+b \sin ^{-1}(c x)\right )}{2 d \left (\sqrt {-d}+\sqrt {e} x\right )}\right ) \, dx}{d}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}+\frac {(b c) \text {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x}} \, dx,x,x^2\right )}{2 d}-\frac {e \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {-d}-\sqrt {e} x} \, dx}{2 (-d)^{3/2}}-\frac {e \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {-d}+\sqrt {e} x} \, dx}{2 (-d)^{3/2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}-\frac {b \text {Subst}\left (\int \frac {1}{\frac {1}{c^2}-\frac {x^2}{c^2}} \, dx,x,\sqrt {1-c^2 x^2}\right )}{c d}-\frac {e \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{c \sqrt {-d}-\sqrt {e} \sin (x)} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {e \text {Subst}\left (\int \frac {(a+b x) \cos (x)}{c \sqrt {-d}+\sqrt {e} \sin (x)} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d}-\frac {(i e) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{i c \sqrt {-d}-\sqrt {c^2 d+e}-\sqrt {e} e^{i x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {(i e) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{i c \sqrt {-d}+\sqrt {c^2 d+e}-\sqrt {e} e^{i x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {(i e) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{i c \sqrt {-d}-\sqrt {c^2 d+e}+\sqrt {e} e^{i x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {(i e) \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{i c \sqrt {-d}+\sqrt {c^2 d+e}+\sqrt {e} e^{i x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \text {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^{i x}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \text {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^{i x}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \text {Subst}\left (\int \log \left (1-\frac {\sqrt {e} e^{i x}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \text {Subst}\left (\int \log \left (1+\frac {\sqrt {e} e^{i x}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\left (i b \sqrt {e}\right ) \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 (-d)^{3/2}}-\frac {\left (i b \sqrt {e}\right ) \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 (-d)^{3/2}}+\frac {\left (i b \sqrt {e}\right ) \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {e} x}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 (-d)^{3/2}}-\frac {\left (i b \sqrt {e}\right ) \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {e} x}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 (-d)^{3/2}}\\ &=-\frac {a+b \sin ^{-1}(c x)}{d x}-\frac {b c \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{d}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1+\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \text {Li}_2\left (-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {Li}_2\left (\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \text {Li}_2\left (-\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \text {Li}_2\left (\frac {\sqrt {e} e^{i \sin ^{-1}(c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 455, normalized size = 0.79 \begin {gather*} \frac {-4 a \sqrt {d}-4 a \sqrt {e} x \text {ArcTan}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )-4 b \sqrt {d} \left (\text {ArcSin}(c x)+c x \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )\right )+b \sqrt {e} x \left (\text {ArcSin}(c x) \left (\text {ArcSin}(c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \text {PolyLog}\left (2,\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+2 \text {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )-b \sqrt {e} x \left (\text {ArcSin}(c x) \left (\text {ArcSin}(c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \text {PolyLog}\left (2,\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+2 \text {PolyLog}\left (2,\frac {\sqrt {e} e^{i \text {ArcSin}(c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )}{4 d^{3/2} x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])/(x^2*(d + e*x^2)),x]

[Out]

(-4*a*Sqrt[d] - 4*a*Sqrt[e]*x*ArcTan[(Sqrt[e]*x)/Sqrt[d]] - 4*b*Sqrt[d]*(ArcSin[c*x] + c*x*ArcTanh[Sqrt[1 - c^
2*x^2]]) + b*Sqrt[e]*x*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqr
t[c^2*d + e])] + Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyLog[2, (Sqrt[e]*
E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + 2*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] +
 Sqrt[c^2*d + e]))]) - b*Sqrt[e]*x*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c
*Sqrt[d]) + Sqrt[c^2*d + e])] + Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyL
og[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + e])] + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(c
*Sqrt[d] + Sqrt[c^2*d + e])]))/(4*d^(3/2)*x)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.45, size = 369, normalized size = 0.64

method result size
derivativedivides \(c \left (-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {a}{d c x}-\frac {b \arcsin \left (c x \right )}{d c x}+\frac {b e \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{d}-\frac {b \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d}\right )\) \(369\)
default \(c \left (-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {a}{d c x}-\frac {b \arcsin \left (c x \right )}{d c x}+\frac {b e \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\RootOf \left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\dilog \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{d}-\frac {b \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d}\right )\) \(369\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/x^2/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

c*(-a/c*e/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))-a/d/c/x-b/d*arcsin(c*x)/c/x+1/8*b/c^2/d^2*e*sum((4*_R1^2*c^2*d
+_R1^2*e-e)/_R1/(-_R1^2*e+2*c^2*d+e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-
c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))+1/8*b/c^2/d^2*e*sum((-_R1^2*e+4*c^2*d+e)/_R1
/(-_R1^2*e+2*c^2*d+e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2
))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))+b/d*ln(I*c*x+(-c^2*x^2+1)^(1/2)-1)-b/d*ln(1+I*c*x+(-c^2*x^2
+1)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="maxima")

[Out]

-a*(arctan(x*e^(1/2)/sqrt(d))*e^(1/2)/d^(3/2) + 1/(d*x)) + b*integrate(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x +
1))/(x^4*e + d*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arcsin(c*x) + a)/(x^4*e + d*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {asin}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/x**2/(e*x**2+d),x)

[Out]

Integral((a + b*asin(c*x))/(x**2*(d + e*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)/((e*x^2 + d)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x^2\,\left (e\,x^2+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/(x^2*(d + e*x^2)),x)

[Out]

int((a + b*asin(c*x))/(x^2*(d + e*x^2)), x)

________________________________________________________________________________________